The spectrum of equivariant Kasparov theory for cyclic groups of prime order

Ivo Dell'Ambrogio Université de Lille

Quantum Groups Seminar Copenhagen, 30 November 2020

Reference:

Ivo Dell'Ambrogio and Ralf Meyer, arXiv:2009.05424 (Sept 2020)

1. The equivariant Kasparov category

- G: a 2nd countable locally compact group $\rightsquigarrow KK^G$: the G-equivariant Kasparov category (Kasparov 1988)
 - Objects: separable complex G-C*-algebras
 - Hom sets: $Hom(A, B) = KK_0^G(A, B)$ Kasparov cycles $/\sim$, or generalized equiv. *-homomorphisms, or . . .
 - composition & a symmetric monoidal structure: 'Kasparov product'

(Meyer-Nest 2006)

 KK^G is a **tensor triangulated category**, that is:

- additive category: can sum morphisms and objects (usual direct sums)
- suspension functor $\Sigma \colon A \mapsto C_0(\mathbb{R}) \otimes A$ (invertible by Bott: $\Sigma^2 \cong \mathrm{Id}$)
- triangles: $\Sigma C \to A \to B \to C$ (mapping cones / cpc-split extensions)
- bi-exact tensor product: $A \otimes_{\min} B$ with diagonal G-action

2. Tensor triangulated categories

This algebraic structure captures for example:

• **Homological algebra:** get LES from triangles $\Sigma C \xrightarrow{\partial} A \rightarrow B \rightarrow C$:

$$\ldots \to \mathit{Hom}(D,\Sigma C) \overset{\partial_*}{\to} \mathit{Hom}(D,A) \to \mathit{Hom}(D,B) \to \mathit{Hom}(D,C) \overset{\partial_*}{\to} \ldots$$

$$\ldots \leftarrow \mathit{Hom}(\Sigma C, D) \xleftarrow{\partial^*} \mathit{Hom}(A, D) \leftarrow \mathit{Hom}(B, D) \leftarrow \mathit{Hom}(C, D) \xleftarrow{\partial^*} \ldots$$

• Bootstrap-like constructions: S any set of objects:

Thick(S) := closure of S under Σ^{\pm} , sums, mapping cones, retracts, and isomorphic objects.

Loc(S) := as above + closed under infinite direct sums.

coproducts

Both constructions yield (full) triangulated subcategories.

Thick $_{\otimes}(S)$, Loc $_{\otimes}(S)$: variants closed under tensoring with any objects \leadsto these are (thick, localizing) <u>tensor ideals</u>. $A \in S$

3. The Balmer spectrum

Can also 'do geometry':

(Balmer 2005)

Every (essentially small) tensor triangulated category \mathcal{T} admits a 'universal support theory', namely:

- A topological space $Spc(\mathcal{T})$, the **spectrum** of \mathcal{T} .
- For each $A \in \mathcal{T}$, a closed subset $supp(A) \subset Spc(\mathcal{T})$, its **support**.
- This data yields a rough geometric classification of objects: $\mathsf{Thick}_{\otimes}(A) = \mathsf{Thick}_{\otimes}(B) \Leftrightarrow \mathsf{supp}(A) = \mathsf{supp}(B)$

Examples:

- (Thomason 1997) V an quasi-compact and quasi-separated scheme, $\mathcal{T} = D^{perf}(V) \quad \leadsto \quad \operatorname{Spc}(\mathcal{T}) \cong V$. In particular for $V = \operatorname{Spec}(R) \quad \leadsto \quad \operatorname{Spc}(D^b(\operatorname{proj-}R)) \cong \operatorname{Spec}(R)$.
- (Benson-Carlson-Rickard 1997) G a finite group, $\operatorname{char}(k) \mid |G|$, $\mathcal{T} = \operatorname{stmod}(kG) \rightsquigarrow \operatorname{Spc}(\mathcal{T}) \cong \operatorname{Proj}(H^*(G; k))$.

4. So, what about $\mathcal{T} = KK^G$?

A very nice characterisation of the Baum-Connes assembly map:

(Meyer-Nest 2006)

The inclusion functor of the following subcategory CII H

sion functor of the following subcategory
$$CII^H$$
 $CI:=\operatorname{Loc}_{(\otimes)}\Big(\bigcup_{H\leq G \text{ compact}}\operatorname{Ind}_H^G(KK^H)\Big)\subset KK^G$ at adjoint $A\mapsto \tilde{A}\in \mathcal{CI}$. Applying $K_*(G\ltimes -)$ to the counit

has a right adjoint $A \mapsto \tilde{A} \in \mathcal{CI}$. Applying $K_*(G \ltimes -)$ to the counit of adjunction $\varepsilon_A \colon \tilde{A} \to A$ we get the Baum-Connes assembly map with coefficients in $A \in KK^G$.

Tantalizingly:

(D. 2008)

If the natural map $(\operatorname{Res}_H^G)_H^* : \bigcup_{H \text{ cpt}} \operatorname{Spc}(KK^H) \xrightarrow{\bigvee} \operatorname{Spc}(KK^G)$ is surjective, we have $\mathcal{CI} = KK^G$, hence $\widetilde{A} \stackrel{\simeq}{\to} A$, hence BC holds for G and all A.

5. Towards to spectrum of Kasparov theory

Unfortunately, the computation of $Spc(KK^G)$ seems well out of reach! Only general result known:

(Balmer 2010)

For any (essentially small) tensor triangulated \mathcal{T} , there is a natural continuous map

$$\rho_{\mathcal{T}} \colon \mathsf{Spc}(\mathcal{T}) \longrightarrow \mathsf{Spec}(\mathsf{End}_{\mathcal{T}}(\mathbf{1}))$$

to the Zariski spectrum of the endomorphism ring of the tensor unit object $\mathbf{1}$. It is surjective as soon as $\operatorname{End}_{\mathcal{T}}(\mathbf{1})_*$ is noetherian.

Corollary

For G a compact Lie group, we have a surjective map

$$\operatorname{Spc}(KK^G) \longrightarrow \operatorname{Spec}(\mathsf{R}_{\mathbb{C}}(G))$$

onto the Zariski spectrum of its complex character ring.

6. Bootstrap categories are nicer

Main technical difficulties:

- KK^G has no good **generation properties**.
- KK^G has (countable) infinite direct sums, but Spc(-) is best for (sub-)categories of **compact** and **dualizable** objects A: those which
 - ▶ satisfy $Hom(A, \bigoplus_i B_i) \cong \bigoplus_i Hom(A, B_i)$ ← our out
 - ▶ and have a tensor-dual A^{\vee} : $Hom(A \otimes B, C) \cong Hom(B, A^{\vee} \otimes C)$.

Definition: G-cell algebras

a-equir books houp coust.

 $Cell^G := Loc(\{C(G/H): H \le G \text{ a closed subgroup}\}) \subset KK^G$

- Cell¹ is the usual Rosenberg-Schochet bootstrap category.
- For G compact, $Cell^G$ is again a tensor triangulated category, and
 - it is 'countably compactly-rigidly generated'. C(6/4) dwal'16+cot U
- its compact and dualizable objects agree \rightsquigarrow they form a nice ttc $Cell_c^G$.

7. The spectrum of compact G-cell algebras

(D. 2010)

Fid = 1 bij

For G finite, the map $\rho \colon \operatorname{Spc}(\operatorname{Cell}_{\mathcal{C}}^G) \longrightarrow \operatorname{Spec}(\mathsf{R}_{\mathbb{C}}(G))$ is split surjective.

For G cyclic of prime order, the map $\rho \colon \operatorname{Spc}(\operatorname{Cell}_{\mathcal{C}}^G) \stackrel{\sim}{\longrightarrow} \operatorname{Spec}(\mathsf{R}_{\mathbb{C}}(G))$ is injective, hence a homeomorphism.

From now on, ideas for the proof. Set $G \cong \mathbb{Z}/p\mathbb{Z}$ for a prime p. Recall:

$$\mathsf{R}_{\mathbb{C}}(G) \cong \mathbb{Z}[\hat{G}] \cong \mathbb{Z}[x]/(x^p-1)$$

and $x^p - 1$ has two irreducible factors:

$$x - 1$$
 and $\Phi_p = 1 + x + \ldots + x^{p-1}$.

8. Computation for $G \cong \mathbb{Z}/p\mathbb{Z}$

Modding them out in turn:

$$\mathbb{Z} \xleftarrow{\mod x-1} \underbrace{\mathbb{Z}[x]/(x^p-1)}_{\mathsf{R}_{\mathbb{C}}(G)} \xrightarrow{\mod \Phi_p} \mathbb{Z}[x]/(\Phi_p) := \mathbb{Z}[\vartheta]$$

Two irreducible components, their intersection is the unique closed point over p. By inverting p on the RHS, get a disjoint union decomposition:

Spec
$$\mathbb{Z} \longrightarrow \operatorname{Spec} \mathbb{R}_{\mathbb{C}}(G) \longleftarrow \operatorname{Spec} \mathbb{Z}[\vartheta(p^{-1})] \longrightarrow \operatorname{Now}, \text{ lift 'the same' decomposition to } \operatorname{Cell}^G, \text{ as follows:}$$

$$\operatorname{Cell}^1 \longleftarrow \operatorname{Res}_1^G \longrightarrow \operatorname{Cell}^G / \operatorname{Loc}\{C(G)\} =: \mathcal{Q}^G \xrightarrow{\operatorname{Spec} \mathbb{Z}} \operatorname{Loc}\{C(G)\} \longrightarrow \operatorname{Cell}^G / \operatorname{Loc}\{C(G)\} =: \operatorname{Loc}\{C(G)\} \longrightarrow \operatorname{Cell}^G / \operatorname{Loc$$

9. Computation for $G \cong \mathbb{Z}/p\mathbb{Z}$

Restrict these two tensor-exact functors to compact objects and apply Spc(-) to get the top row:

$$\operatorname{Spc} \operatorname{Cell}_{c}^{1} \rightarrowtail \operatorname{Spc} \operatorname{Cell}_{c}^{G} \longleftarrow \operatorname{Spc} \mathcal{Q}_{c}^{G}$$

$$\downarrow^{P} \qquad \qquad \downarrow^{P} \qquad \qquad \cong \downarrow^{P}$$

$$\operatorname{Spec} \mathbb{Z} \rightarrowtail \operatorname{Spec} \mathbb{Z}[\vartheta, p^{-1}]$$

- The top row is also a disjoint union decomposition (Balmer 2005+15).
- Vo The left ρ is known to be bijective (D. 2010). uses the LCT
- End $(1)_*\cong \mathbb{Z}[\vartheta,p^{-1},\beta^{\pm 1}]$ in \mathcal{Q}^G , computed thanks to Köhler's UCT.

 In particular, the right square commutes! (2016) for there is

 - ✓ The right ρ is bijective by an abstract criterion (D.-Stanley 2016), since $\mathcal{Q}_c^{\mathcal{G}} = \mathsf{Thick}\{\mathbf{1}\}$ by construction and $\mathsf{End}(\mathbf{1})_*$ is regular as seen.

Hence the middle ρ is bijective as well. QED

G = bc(1), End(1) & north & reg. $G = SL_n(C)$ Ref. G above group

"(ell G")